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The asymptotic properties of Burgers turbulence at extremely large Reynolds num- 
bers and times are investigated by analysing the exact solution of the Burgers equation, 
which takes the form of a series of triangular shocks in this situation. The initial 
probability distribution for the velocity u is assumed to decrease exponentially as 
u + co. The probability distribution functions for the strength and the advance 
velocity of shocks and the distance between two shocks are obtained and the velocity 
correlation and the energy spectrum function are derived from these distribution 
functions. It is proved that the asymptotic properties of turbulence change qualita- 
tively according as the value of the integral scale of the velocity correlation function J ,  
which is invariant in time, is zero, finite or infinite. The turbulent energy per unit 
length is shown to decay in time t as t-1 (with possible logarithmic corrections) or 
t-# according as J = 0 or J $. 0. 

1. Introduction and summary 
It is generally expected that turbulence would have some definite asymptotic 

properties in the limit of large Reynolds numbers, and to determine such properties is 
the main objective of the study of turbulence. There are two categories of asymptotic 
properties. One depends upon the macroscopic structure of the velocity field, which is 
much influenced by the initial and/or boundary conditions. The other is independent 
of the details of these conditions. The properties belonging to the former vary 
from turbulence to turbulence, while those belonging to the latter are universal. 
Speaking about the three-dimensional Navier-Stokes turbulence, the energy decay 
law belongs to the former group, whereas the inertial-range spectrum (Kolmogorov 
1941, 1962) belongs to the latter. 

In the present work we shall deal with Burgers turbulence, intending to work out its 
asymptotic properties at  very large Reynolds numbers. Burgers turbulence has much 
in common with the Navier-Stokes turbulence, but a definite difference is brought 
about by the absence of the pressure term in the Burgers equation. 

Burgers turbulence has been investigated both analytically and numerically by 
many authors either as a preliminary approach to turbulence prior to an occurrence 
of the Navier-Stokes turbulence or for its own sake since the Burgers equation 
describes the formation and decay of weak shock waves in a compressible fluid 
(Lighthill 1956; Tatsumi & Tokunaga 1974). As an analytical approach we have za 
number of theories using different closure assumptions. The cumulant discard hypothe- 
sis of Reid (1957) and Kawahara (1968), the Wiener-Hermite expansion of Meecham 
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& Siege1 (1 9641, the Lagrangian-history direct-interaction approximation of Kraich- 
nan (1968), the saw-wave expansion of Tatsumi (1969) and Tatsumi & Kida (1972) 
and the multiple time-scale expansion of Malfliet (1969) and Tatsumi & Mizushima 
(1979) are only representative examples. The validity of such closure assumptions can 
be examined by comparing the results due to these assumptions with those due to 
numerical experiments. 

The numerical experiments are made by calculating the solution numerically start- 
ing from an arbitrary initial condition. Crow & Canavan (1970) integrated directly the 
Burgers equation of motion, Jeng et al. (1966) calculated the exact form of the solution 
in terms of the initial data and Hosokawa & Yamamoto (1970) and Yamamoto & HOW- 
kawa (1976) made use of the Monte Carlo quadrature for calculating the exact form. 
These experiments were made for finite Reynolds numbers and the asymptotic values 
of various statistical quantities at very large Reynolds numbers were extrapolated. 

Looking'over all the results of analytical and numerical studies, we find that Burgers 
turbulence has some definite asymptotic properties at large Reynolds numbers. It 
seems to have been established a t  least that the k-2 energy spectrum at large wave- 
numbers is a universal feature of Burgers turbulence and that the energy decay law 
depends upon macroscopic structure of the velocity field (see Yamamoto & Hosokawa 
1976). 

Now we would like to analyse Burgers turbulence in an exact manner using no 
closure assumption and find out its statistical properties at  very large Reynolds 
numbers. Since we are interested in the asymptotic properties in the limit of large 
Reynolds numbers and times, it  is convenient to begin by considering the velocity 
field in this limit. It is known that the velocity field in this limit is represented by a 
series of triangular shock waves (Burgers 1950, 1974; Tatsumi & Kida 1972). Each 
shock has random strength, position and advance velocity. Once their probability 
distributions are known, all the statistical quantities of the velocity field can be derived 
from them. For example, the velocity correlation function and the energy spectrum 
function are derived from the joint probability distribution functions for two shocks. 

Burgers (1974) tried to calculate these probability distributions by analysing the 
asymptotic behaviour of the exact form of the solution of the Burgers equation. He 
dealt with the case in which the integral scale of the velocity correlation function J, 
defined by (3.6) below, does not vanish. This case will be referred to as case I1 here. The 
time-dependence of the characteristic length of the velocity field and the energy decay 
law were immediately derived by making use of the constancy of J and the dimen- 
sional reasoning. The distribution functions for a single shock were obtained 
in integral form, but they were too complicated to be worked out explicitly. A few 
lower-order moments of the strength and the advance velocity of a single shock were 
calculated. By making use of them, the turbulent energy was determined, including a 
numerical factor. The joint probability distribution functions for two or more shocks 
were not obtained because of tremendous difficulty in the analysis. 

In  the present paper we shall mainly deal with the case of vanishing J, which will be 
referred to as case I here, using a method similar to that of Burgers (1974). It will be 
shown below that turbulence has qualitatively different properties according as 
J + 0 or J = 0. 

The procedure which is used for obtaining the velocity field in the limit of large 
Reynolds numbers and times, will be explained briefly in $2.  First, we shall examine the 
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asymptotic behaviour of the solution of the Burgers equation in this limit, and then 
give it a geometrical interpretation. The s curve which is an indefinite integral of 
the initial velocity field and the parabolic arc which includes the time t as a para- 
meter will be introduced. The set of positions of contact points of these two curves 
determines the velocity field completely. By investigating the probability distribution 
of this set at every time, we can obtain various statistical quantities which will be 
discussed in the subsequent sections. 

It should be noted that there is no mechanism for producing new randomness in the 
Burgers equation itself and the randomness can come into the velocity field only 
through the initial and/or boundary conditions. Since, however, we shall deal with 
homogeneous turbulence in an infinite domain, only the former condition comes into 
the problem. The statistical properties of the initial condition will be discussed in $ 3. 
We shall restrict our consideration to the velocity field in which the probability dis- 
tributions for velocities a t  two points rapidly become independent as their mutual 
distance increases so that all moments of the velocity correlation exist. Then the 
statistical approach becomes different for cases I and I1 mentioned above. In  case 11, 
Burgers expressed the s curve as an Wiener-process along the x axis. In case I, which we 
are mainly concerned with here, we shall express the s curve as a stationary process. 

Statistics of turbulence in case I will be studied in $5 4-7. We shall deal with the case 
where the probability density, with which the s curve takes the value y at a point x, 
decreases exponentially as y goes to infinity [see (4.15)]. The asymptotic properties 
at large times will be examined and the following results obtained. The approach 
to the asymptotic state is fastest when a = 0 andp = 1 in (4.15). The number of shocks 
per unit length of the velocity field decreases as t-i.  Consequently the turbulent energy 
per unit length decays as t-1. The velocity field assumes a self-preserving structure, 
that is, all the quantities concerned are invariant in time if they are normalized with 
reference to the characteristic length and the time. The probability distributions for 
the strength and the advance velocity of a single shock are mutually independent and 
they are expressed as (4.38) and (4.39). The joint probability distribution for two 
adjacent and separated shocks are given by (5.11) and (6.13) respectively. By making 
use of them we can calculate the probability distributions for the distance 
between two adjacent and separated shocks as (5.15) and (6.18) respectively and the 
velocity correlation function as (7.16). This correlation function starts with a positive 
value at i: = 0, decreases linearly with ?a t  first, then changes its sign, takes a minimum 
value and finally approaches zero exponentially. Its Fourier transformation yields 
the energy spectrum function as (7.24), which is positive definite and changes as k2 and 
k-a at small and large wavenumbers k. 

In  $8 we carry out numerical experiments dealing numerically with the velocity 
field, which is represented by a series of triangular shock waves. For case I, i t  is shown 
that experimental results approach the asymptotic state predicted analytically. 
For case 11, we determine numerically the functions which were not obtained explicitly 
by Burgers (1974), such as the probability distributions for the strength, the advance 
velocity of a shock and the distance between two shocks, the velocity correlation 
function and the energy spectrum function. Their curves are depicted in figures 15-19. 
The standard deviations from these curves are of order of a few per cent on the whole. 
As for the quantities which have already been obtained by Burgers, they are compared 
with numerical results. These are the time-dependence of the characteristic length 
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(figure 12), the energy decay law (figure 13) and a few lower-order moments of the 
strength and the advance velocity of a shock (tables 2 and 3). It is observed that the 
agreement is good. 

Another consideration about the relation between the time-dependence of the 
characteristic length and the energy decay law with the initial condition is made in $9.  
Lastly the behaviour of the energy spectrum function at small wavenumbers is dis- 
cussed in connexion with that of the velocity correlation function at large distance. 

2. Solution of the Burgers equation 
The Burgers equation of motion is written in non-dimensional form as 

au au i a'u -+u- =: - - 
at ax R axa' 

where u(x, t) denotes the velocity, x the space co-ordinate, t the time and R = u, l0/v  
the Reynolds number referred to the characteristic velocity u, and length 1, of. the 
initial velocity field and the kinematic viscosity v. 

We shall consider an ensemble of solutions u(x, t) of (2.1) under arbitrary continuous 
initial conditions u(x, 0) specified in an infinite domain --co < x < 00. In  particular, 
we are interested in the statistical behaviour of the ensemble of the velocity field 
u(x, t) for R % 1 and t % 1.  The behaviours of the solution of (2.1) for very large R and t 
have already been investigated in detail by Tatsumi & Kida (1972) and Burgers (1974), 
and we recapitulate them here for later convenience. 

The solution under an arbitrary initial condition u(x, 0) is expressed in the following 
integral form (Hopf 1950; Cole 1951): 

where xo is an arbitrary constant. When R 9 1, the contribution to the integral 
essentially comes from the immediate neighbourhood of the point, say X, at which the 
exponent * 

u(x", 0) ax") 

takes an absolute maximum value for fixed x and t. Then we have 

u(2, t) % (x - X ) / t .  (2.4) 

It should be noted that (2.4) does not generally represent a straight line since X is a 
function of x and t .  In  order to examine the dependence of X on x and t, we introduce 
the following two curves (figure 1): 

y = s(x') = -s," U(X", 0) ax" + 8(X0) 

and 
(2' - 2)' 

y=- + C. 2t 
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F ~ a m  1. The B curve and a contacting parabola. 

The form of the s curve (2.6) is completely determined by the initial condition, 
whereas the parabola given by (2.6), whose axis is the line X I  = x and whose vertex 
becomes flatter with increasing t ,  is different for different points x and times t .  Let us 
take first the value of C so large that the parabola is well above the s curve, then 
decrease C until the two curves touch each other for the first time. Then it may easily 
be seen that the abscissa of the contact point X gives the absolute maximum of (2.3). 
Making the parabola glide on the s curve, we get the value of X corresponding to each 
x and thus obtain the velocity u(2, t )  as a function of x through (2.4). 

Sometimes it happens that the two curves touch simultaneously at two or more 
points. Since the probability of simultaneous contact at more than two points is 
negligibly small, we may safely restrict ourselves to the case of double contact. When 
t % 1, all contact points come close to the tops of the s curve because then the parabola 
is much flatter than the s curve (figure 2). Let us denote the abscissa of the ith top of 
such kind by ri, where i = 0, & 1, & 2, . . . and ro is the one closest to the origin. If, for a 
chosen x ,  we denote the abscissae of two contact points by X i  and Xi+l ,  the integrals in 
(2.2) are evaluated as the sum of contributions from the immediate neighbourhoods of 
X i  and Xi+l. Noting that Xi N” rc and Xi+l N” qi+l, expanding the function s(x’) around 
qi and ri+l and evaluating the contributions from the two parts, we obtain 
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FIGURE 2. A parabola in double contact with the s curve. 

where Ei is given by 

The expression (2.7) is valid in the region 
andt  9 1. 

+ ti) < x < &(& + &+l) and for R 9 1 

When R is so large that R 3- t 1, (2.7) and (2.8) reduce to 

u(x, t) = (2.9) 

and (2.10) 

Equation (2.9) represents a discontinuity or a shock of strength pi/t located at &,where 

(2.11) Pi = %+1- Ti. 
It can easily be shown that the shock moves with the velocity & / t ,  where 

5i = E 4 - 7 ,  Ti+l+ TZ (2.12) 

which is equa1 to the velocity at the centre of the shock. It follows from (2.10) that the 
co-ordinate ti coincides with the axis of the parabola, passing through the two tops 

Thus the velocity field in this circumstance is represented by a sequence of vertical 
lines (shocks) connected by oblique lines of slope l / t  (figure 3). The positions of shocks 
and the intersections of the oblique lines with the x axis are given by {ti} and {v4) res- 
pectively. Each shock moves a t  a different speed determined by (2.12) and therefore 

(Ti, 4%)) and (%+I, S(?i+l)) of the 8 curve. 
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they collide with each other from time to time. When two shocks come into collision, 
they coalesce into one and their strengths are summed. The advance velocity &/t and 
the strength of shocks multiplied by t ,  pi are shown to be invariant in time except at the 
instant of collision, while pi and pi &/t  are conserved at each collision. The above laws 
of motion enable us to deal with the system of shocks as if it  were a collection of cohe- 
sive particles, in which each particle is located at & and has mass piy velocity Ci/t and 
momentum pi &/t .  There is no interaction between particles except at the instants of 
collisions. All the collisions are perfectly inelastic and the masses and the momentum 
are conserved at  every collision. The only peculiarity of this particle system is that the 
velocities, the masses and the distance between a pair of adjacent particles are related 
by (2.12). 

Reverting to the picture of the s curve and the parabola, the collision of shocks 
corresponds to the coalescence of two adjacent parabolic arcs or, in other words, the 
disappearance of a top of the s curve which used to be in contact with these parabolic 
arcs. Thus the number of the contact tops of the s curve decreases monotonically in 
time. Since the system of the tops represents sample points of the arbitrary function 
s(z’), decrease in the number of the tops immediately leads to decrease of 
arbitrariness of the system. Consequently the randomness of the velocity field can 
only decrease in time. This property of Burgers turbulence makes an essential contrast 
to that of the Navier-Stokes turbulence in which the randomness is continuously 
produced by the nonlinear interaction of vortex filaments and layers. This is the reason 
why we expect that the statistical properties of Burgers turbulence depend largely 
upon the initial conditions. 
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3. Initial condition 
Since the velocity field u(x,t) governed by the Burgers equation (2.1) is uniquely 

determined by the initial field u(x, 0), the randomness can come into the field only 
through the initial condition. We are interested in the statistical behaviour of the 
turbulent velocity field when an ensemble of initial data u(x, 0) or the s curve is given 
with some prescribed probability distribution. It is assumed that the velocity field is 
statistically homogeneous and isotropic in space. As a working hypothesis we assume 
that the initial velocity field has a correlation length x such that u(x, 0) and u(x‘, 0) 
become independent very rapidly as Ix-x‘I increases beyond x. Then, the velocity 
correlation function 

B(r, t )  = (u(x ,  t )  u(x + r ,  t ) )  

approaches zero faster than any negative power of r as r goes to infinity at the initial 
instant. Here ( ) represents the average taken over an ensemble of the initial velocity 
field. 

As described in 9 2, the velocity field u(x,  t )  takes the form of a sequence of shocks for 
R 9 1 and t B 1.  Since the number of shocks decreases through collisions, the character- 
istic length of the velocity field, which is measured by the mean distance between 
adjacent shocks, increases monotonically with time. Now that we restrict our atten- 
tion to the case t > 1, the length-scale of the parabola, which is measured by the radius 
of curvature at the vertex, is much longer than that of the s curve. Thus we may take 
a length-scale which is much longer than that of the s curve but much shorter than that 
of the parabola. 

The mean values of the first and second moments of s(x) - s(xo) are easily derived 
from (2.5): 

and 

(x - xo - r )  B(r, 0) dr. 
zo a so”-“ (3.3) 

((~(x) -s(xo))2) = [zdx‘/zdz#(u(x’,  O)u(z”, 0 ) )  = 2 

For large values of lx-xoI ( 2 x), the relation (3.3) is expressed asymptotically as 

rB(r,O)dr - O(1) when J = 0 (caseI), (3.4) 
((s(x)-s(xo))2)= I - 210a 

[2J12:-xoj - O(lz-x,J) when J + 0 (caseII), (3.5) 

where J = IOm B(r, t )  dr = B(r, 0) dr 
l o m  

(3.6) 

is the integral scale of the velocity correlation function. Note that J is invariant in 
time as easily proved by making use of (2.1) (Burgers 1950). This makes the distinction 
of the two cases according to the value of J significant for all times. 

Case 11, J $; 0, was investigated in detail by Burgers (1974). He calculated higher- 
order moments ( ( s ( x )  - s(xo))W), n = 3 , 4 ,  . . . , and found that the s curve is expressed as 
a Wiener-process along the x axis. By making use of the constancy of J and the dimen- 
sional reasoning he obtained the energy decay law. The probability distribution func- 
tions for the strength and the advance velocity of shocks were expressed in integral 
form and a few lower-order moments of them were calculated. However, the complex- 
ity of the expression for the probability distribution function prevented him from 
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working out their forms explicitly. We shall deal with this case in 0 8.2 and determine 
these functions numerically as well as other statistical quantities such as the prob- 
ability distribution functions for the distance between two shocks, the velocity 
correlation function and the energy spectrum function. 

Case I, J = 0, will be dealt with in the following sections. We exclude the case where 
(3.4) vanishes. For, when it does, we have ((s(x) - S ( X ~ ) ) ~ )  = 0 and s(x) = s(xo) (= con- 
atant) almost everywhere, which corresponds to a trivial velocity field, i.e. u(x, 0) = 0. 
In  view of (3.2) and (3.4), it  may be a reasonable assumption that the random variable 
s(x) - s(x’) takes values of O( 1) whenever Ix - x’( > x. It follows from the definition of 
8(x) and the independence of the initial velocity field that 8(x) ands(x’) are independent 
if 1x-x’J % x. So long as the values of s(x) only at points distant from each other by 
much more than x are considered, the s curve itself can be regarded as a spatially 
stationary stochastic process. The corresponding velocity field is essentially equiva- 
lent to the one which is expressed by the space derivative of a spatially stationary 
process (see appendix). The form of the probability distribution function for the s curve 
is specified as the initial condition. 

4, Probability distribution for a single shock 
As was mentioned in the preceding section, there exists a length-scale, say Ax, 

which is much longer than the characteristic length of the s curve which represents the 
initial velocity field but much shorter than that of the parabolic arcs which is related 
to the velocity field a t  the time t. Since the contact points of parabolic arcs on the s 
curve come close to tops of the s curve for large t ,  adjacent parabolic arcs are roughly 
connected a t  tops of the s curve (see figure 3). We divide the x axis into a number of 
intervals I, = (x, - Ax/2, x, + Ax/2), where 

x, = mAx, (4.1) 

m being integers. Denote the ordinate of the highest top of the s curve in the interval 
I, by y, and take (x,, y,) as the representative co-ordinate of the contact points in I,. 
This approximation may be permissible since the characteristic length of the velocity 
field under consideration is much longer than Ax. Then the statistical properties of an 
ensemble of the s curve is described by a set of probability distributions for y,. Since, 
on the other hand, Ax is much longer than the characteristic length of the s curve, the 
probability distribution for y, in different I, is supposed to be independent of each 
other. Thus, we assume that the series of the contact points constitutes a stationary 
stochastic process along the x-axis, each step of which is independent. 

Let P(y) be the probability distribution for the ordinates of the highest top of the 
s curve in each interval normalized as 

f w  P(y)dy = 1. 
- W  

Then the number of representative points of the series of contact points within the 
area dxdy around a point (x, y) in the x, y plane is given by 



346 S .  Kida 
The axis of the 

parabola 

FIGURE 4. A series of contact points representing a single shock. 

where ax, dy 3 Ax is assumed. If we express the equation of a parabola as 

(4.4) 

the number of the series of contact points which pass through two areas ax,, dy,, and 
ax,, dymP respectively around two points (x,,, y,,) and (x,,, ym2) on the parabola and 
never go over across it (see figure 4) is given by 

y ’= (z - p)2/2t + q, 

where 

It should be noted that the polygonal line in figure 4 represents a s -  quen e of contact 
points, not the s curve itself. The picture of the corresponding shock is shown in the 
lower part of figure 4. The position of the shock is given by the axis of the parabola. 
Making reference to (2.10)-(2.12), we find that the strength ,u/t and the advance 
velocity c/t  of the shock are given by 

~ / t  = (xrn8-zrn1)/t, (4.8) 

C/t = - ( ~ m ~ - ~ m l ) / ( ~ r n 2 - ~ m 1 ) ~  (4.9) 

The vertex (p, q)  of the parabola is written as 

(4.10), (4.11) 

where use has been made of (4.6), (4.8) and (4.9). 



Asymptotic propertia of Buf-gers turbulence 347 

Replacing the independent variables in (4.5) by p ,  [through (4.8)-(4.11), we obtain 
the number density of shocks per unit length whose strength lies between p / t  and 
(,u + dp)/ t  and advance velocity between (T/t and ([+ d [ ) / t  as follows: 

When t is large, the factor 
n P-P(Yi)) 

.I+ml, ma 

may be approximated by an integral, and (4.12) is written as 

where 

(4.13) 

(4.14) 

The integrand of (4.13) for large t has a, peak at some point, say y = jj, which is much 
larger than (y2)>8, the standard deviation of P ( y ) .  This can be proved straightforwardly 
if P ( y )  approaches zero exponentially or algebraically as y goes to infinity. 

When P ( y )  has an exponential tail, the peak is localized and the integration can be 
estimated by making use of the method of steepest descent. In  the following we shall 
consider this case.t Put P(y)  as 

P(y) z AxAyaexp ( -By@) for y 9 (y2)*, ( 4 . W  

where A,  B, p are positive constants and a is an arbitrary one. As will be shown later, 
the parameters B and /3 in the exponent play important roles, whereas A and a do only 
minor ones. First we assume that the saddle point which gives the peak of the integrand 
of (4.13) lies in the region y % (yz)>8 and y % pc / t ,  and then show that the results are 
consistent with this assumption. 

Since P(y) 4 1 for y (y2)>8, (4.13) is approximated by 

where 

If we denote the saddle point of @(y) by jj, we have 

(4.17) 

(4.18) 

t When P(y)  vanishes algebraically, the peak is not localized and the above method is un- 
available. Instead, direct integration can be performed in terms of only the asymptotic form of 
P ( y )  (see appendix). 

$ It is obvious from the definition that the distribution functions P(y) for different widths Az 
are connected by the relation PnAz(y) = nPA,(y) (1 -FA,(y)}"-l, where subscripts denote the 
width. For large y, this becomes PnA,(y) = nPA,(y), i.e. PA&) is proportional to Az. 
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where 

It follows from (4.15) that, when y B {y2)4 and y ,uc/t, 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

When 01 = 0 and /3 = 1, these relations are exact, otherwise the errors are O(y-a, y- l ) .  
Substitution from (4.21) and (4.22) into (4.19) yields 

which has the asymptotic sohition 

(4.25) 

This tells us that ?j and therefore ij increase with t ,  which is consistent with the apriori 
assumption ij B {y2)*. 

We transform the integration variable as 

y = y + C y ' ,  (4.26) 

where C is a constant. Approximating (4.15) and (4.23) to the lowest order of y' and 
substituting them into (4.17) and (4.18), we obtain 

n(p, 6; t )  = CA2T p2".exp ( - 2Bija) 

x exp ( - - 2 exp ( - BPijP-Wy') 

where (4.20) and (4.24) are used. Here we introduce new variables 

and put 

(4.28) 

(4.30) 

(4.31) 

Except €or in $8.2 the variables ,E, c x, P defined here and later stand for the corresponding 
ones measured by Z(t) and fi ,! ,  &,, gs, 0 , x  the functions of these variables. 
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Then (4.24) becomes 

349 

(4.32) 

By making use of (4.29)-(4.32), we can calculate (4.27) to be 

w , c ; ~ )  = l(t)2n(p,c;t) = G p e x p (  --.6+~)], (4.33) 

which is the number density of a single shock of (p ,  C).t This is exact again when u = 0 
and /3 = 1. It follows from (4.20), (4.25), (4.28) and (4.31) that C/S w l / lnt  << 1 for 
large t, which implies that the peak of the integrand of (4.13) is actually localized. 
Equation (4.33) shows that the probability distributions for jZ and ( of a single shock 
are independent of each other and that the time enters only through Z(t), i.e. it is 
similar with respect to time. 

Integration of (4.33) with respect to jZ and ( yields the number of shocks per unit 
length: 

(4.34) 

which shows that Z(t) is the mean distance between adjacent shocks. The mean distance 
Z(t) is calculated by substituting ij determined by (4.24) into (4.28). Its leading term is 
written as 

where use has been made of (4.25). It can be seen that (4.35) becomes 

Z(t) cc tit (4.36) 

for large values oft, which is exact when /3 = I and asymptotically valid when /3 9 1. 
This time-dependence of Z(t) is characteristic of Burgers turbulence for J = 0. The 
energy decay law is immediately derived from it [see (7.12)]. Incidentally it is known 
that the mean distance changes in a quite different way in the case J + 0 [see (8.3)]. 

Dividing (4.33) by N(t ) ,  we obtain the probability distribution density f(p, [) of 
finding a shock of (ji, I) : 

fw, t) = *np exp { - Nap2 + P)> = f( i l i)  &3, (4.37) 

and J4P) = exp ( -  43 (4.39) 

where J"cili) = !@ exp (- tnili2) (4.38) 

are the probability distribution densities for the strength and the advance velocity of 
shocks. They are shown graphically in figures 5 and 6, respectively. Note that these 
functions do not depend upon the time explicitly. 

The moments of jZ and (for (4.37) a.re easily calculated as 

(4.40) ( l i m p )  = @m)(p) = 
I?(&,+ 1) r(g(n+ 1)) whenniseven, 

when n is odd, 

t The notation (p, c) denotes a shock having the strength Z(t) P / t  and the advance velocity 
W) S/t. 
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FIGURE 5. The probability distribution for the strength of shocks in case I. The marks + , 0, 
indicate respectively the numerical results in experiments (i), (ii) and (iii) made in 58.1. 

5 
FIGURE 6. The probability distribution for the advance velocity of shocks in case I. 
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FIGURE 7. A series of contact points representing two adjacent shocks. 

where r is the gamma function. The fist few of them are 

4 6 32 
ng 

@) = 1, @2) =;, ( p 3 )  =--, @4) =- 

(4.41) 

The first of (4.41) reflects the fact that the mean distance between adjacent shocks is 
chosen as a unit of length. 

5. Joint probability distribution for two adjacent shocks 
In  order to calculate the velocity correlation function and the energy spectrum 

function it is necessary to know the joint probability distributions for a pair of shocks. 
A pair of shocks are classified into two groups according as they adjoin each other or 
contain other shocks between them. We shall refer to the former pair as ‘two adjacent 
shocks’ and to the latter as ‘two separated shocks’ and deal with them in this section 
and in the next section respectively. 

Two adjacent shocks are represented by a series of contact points which passes 
through the intersection of two adjacent parabolas and contacts again with each para- 
bola a t  other points and runs below both parabolas a t  all the other points as illustrated 
in figure 7. 
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Let us express the equation of the two parabolas by 

where p1 < p z ,  and denote the co-ordinate of their intersection by (x,,, ymz). The axes 
of these parabolasp, andpz indicate the positions of the two shocks. The number of the 
series of contact points which pass through the area dx,, dy,, around a point (x,,, ymJ 
on the left parabola, dx,, dy,, around the intersection (x,,, ym2)  and dx, dy,, around 
a point (x,,, y,) on the right parabola and below both parabolas at all the other points 
is given by 

1 3  

(Ax)’ j= 1 
- II P(~q)dxrnjdYq JI {‘-P(Y~)}, (5.3) 

i+ml.  ma. ma 

t (xi-pJZ + q1 for ~4 Q xm,, 

Y4 = (5.4) 
s ( ~ ~ - p ~ ) ~ + q ~  for xi > xms. 

P’ = xma-xmB, (5.5) 

i‘ 
where 

When there are two shocks (p, 5)t and (p’, c‘) a t  pl and p z  respectively, by making 
reference to (4.8)-(4.11), we find the following relations: 

P = Xm2 - Xml 9 

The distance h between the two shocks is given by 

where (5.7) has been used. 

of two adjacent shocks (p,  5)  and (p’, c’): 

=Pz-P,  = C--5+HP+PUI)(> O ) ,  (5.9) 

Rewriting (5.3) in terms ofp,p’, 5, gl through (5.5)-(5.8), we get the number density 

for C-C+#(p+p’) > 0, 

for C-c+Q(p+p’)  c 0. 
(5.10) 

t Here the notation (p, 5)  stands for a shock whose strength and advance velocity are p/t and 
[It respectively. 
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The factor 

has been approximated by an integral as before. 
When the initial probability distribution P ( y )  is given by (4.15), the integration in 

(5.10) for large t can be carried out in just the same way as in the preceding section. 
Dividing fia(ji, [;ji', e; t )  thus obtained by the number of shocks per unit length, we 
get the joint probability distribution for two adjacent shocks: 

C; ji', = C; e; t ) / N ( t )  

where 

(5.11) 

(5.12) 

If we integrate the joint probability distribution for two adjacent shocks (5.10) or its 
asymptotic form (5.11) with respect to p' and 5' or ,ii' and e over the whole region of 
these variables, we recover the distribution for a single shock (4.13) or (4.33). 

All the statistical quantities for two adjacent shocks are derived from (5.11). If 
(5.11) is integrated with respect to [ and e under the restraint that their mutual 
distance i; = C-C++(ji+ji ') (5.13) 

is fixed, the joint probability distribution for two adjacent shocks of the strengths 
jilt and j i ' / t  separated by the distance is obtained: 

#a(X;ji , ,E')  =la d[Jm d e # a ( j i , [ ; j i ' , e ) ~ ( X - ~ + [ - ~ ( ~ + j i ' ) ) .  (5.14) 
- w  -a 

Further integration of (5.14) with respect to ji and ji' yields the distribution for distance 
between two adjacent shocks 

(5.15) 

which has the following asymptotic forms for small and large values of 1: 
i j a ( X )  w 4 3  -in M 0.685 as X+ 0, (5.16) 

(5.17) 

The distribution 
figure 8. 

function ga(X) is depicted together with its asymptotic forms in 

- 

It can easily be shown that (5.15) satisfies the following integral relations: 

(5.18) 

(5.19) 
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FIQURE 8. The probability distributions for the distance between two shocks in ‘ L & B ~  I. The marks 
A, ., indicate the respective numerical results for the distributions &(A),  &(X), g(x) in 
experiment (ii) . 

The relation (5.18) is consistent with the definition of g, as a probability distribution, 
while (5.19) shows that the mean value of is equal to that of ,!i [see the first of (4.41)], 
which is obviously seen from the structure of the velocity field. 

It is known that, if the time-dependenceof Z(t) is assumed to obey the following power 

(5.20) 
law 

the exponent p is given by 
E(t) oc tP, 

(5.21) 

(Tatsumi & Kida 1972). A simple calculationusing (5.11), (5.12) and (5.14) yields 

I, = *7 (5.22) 

which coincides with (4.36). Thus the probability distribution functions (4.37) and 
(5.11) are compatible with (4.36) but not generally with (4.35). This fact may be ex- 
plained by considering the expression (4.35) as the next-order approximation of Z(t). 
The distribution functions corresponding to it may be obtained by retaining the next- 
order terms with respect to large t in the integrals of (4.13) and (5.10). By a brief 
inspection we can see that they are no longer similar functions oft, i.e. they contain the 
time explicitly. 

6. Joint probability distribution for two separated shocks 
We now consider two separated shocks. They are represented by a series of contact 

points which touches each of two parabolas twice and never crosses either of them as 
illustrated in figure 9. 

Let us express the two parabolas by (5.1) and (5.2) and denote the x co-ordinate of 
their intersection by x. Then the number of the series of contact points which pass 
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I i 

FravRE 9. A series of contact points representing two separated shocks. 

through the areas dxml dy,,, axmp dym8, axrna dy,,, ax,, dy,, around the points (x,,, yml),  
(x,,, y,,), (x,,, yma),  (x,,, ym4) respectively and never cross the two parabolas, where the 
former two points are on the left parabola and the latter on the right one and 

is given by 
Xml < Xmn < XmS < Xm.9 

(6.1) 
1 4  
- n P(Y,)dX dY l-I (1 - J Y Y d ,  

j=1 9 i i m l ,  m,, ma, ma, 

where 
(xi -p1)2 + q1 for xi < x, 

(xi -p2)2+ q2 for x$ > x .  
Yi  = 

Denote the shocks located a t  pl and p 2  by (p, 5)  and (p', y') respectively. Then we have 
the following relations: 

p = xmn-xml, p' = xm4-xma, (6.3) 
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The distance between the two shocks is written as 

(6.8) 
A = p 2 - p 1 =  x m a - x m s + 6 ‘ - 6 + ~ ,  P+P’ 

where (6.6) has been used. 
In  order that such a pair of shocks exist the following relation must be satisfied: 

Xmt X < Xm3, (6.9) 
as clearly seen from figure 9. The condition (6.9) is rewritten as 

(6.10) 
A A 

--(aA+c-gPu) t < Qz-cl ,  .c $&-6‘-+p‘), 

using (6.3)-(6.8), which demands 

A > 5 ‘ - 6 + 7  P +P’ (6.11) 

as a necessary condition. 
By transforming the variables in (6.1) from xmj, ymj, j = 1,2,3,4 into A,p, c,p’, 6‘, 

q,, qz, x through (6.3)-(6.8), we get the number density for two separated shocks (p, 5) 
and (p’, g’) with the distance A as follows: 

.n,(A;p, 6; p’, 6‘; t )  

1 PP’ 

1 1 
p (Q1 + 5 (6+ w) p ( 4rl + 5 (5- w) 

= - - ss, dQ, dQ2   AX)^ t2 

(6.12) 

where D denotes that the integration with respect to q1 and q2 should be carried out 
under the condition (6.10). The factor 

n {1--F(Yd} 
i+m,,m2,ma,m4 

in (6.1) has been replaced by an integral as before. The integration in (6.12) for large t 
can be performed by the method of steepest descent as in the preceding sections when 
P ( y )  is given by (4.15). Dividing fis(x;,i j ,  [;,%‘, e ; t )  thus calculated by N ( t ) ,  we get the 
joint probability distribution function for two separated shocks (p, [) and (, i l l ,  e) with 
the distance Z(t) A: 

(6.13) 



Asymptotic properties of Burgers turbulence 357 

which has the following asymptotic form: 

%(X; f i ,  6; P’, !3 = m a  Of(P’a e) a5 x -f 00, (6.14) 

where the neglected terms are exponentially small. This indicates that the distribu- 
tions for any pair of shocks become independent of each other sufficiently rapidly as 
their mutual distance increases. As A goes to zero, on the other hand, (6.13) for 

[ -e- t@+pl)  > 0 
becomes 

i.e. gS vanishes in proportion to x .  
By integrating (6.13) with respect to [and Q‘ from -co to co, we obtain the joint 

probability distribution for two separated shocks of strengths Z(t) ,G/t and Z(t) p ’ / t  
with the distance Z(t) A: 

(6.16) 

Further integration of (6.16) with respect to ,Z and P‘ in the domain [0, m) leads to the 
probability for existence of two separated shocks with the distance Z(t) X irrespective 
of their strengths and advance velocities: 

(6.17) 

Substituting (6.13) and (6.16) into (6.17), we find that 

This distribution function has the following asymptotic forms for small and large values 
of x: 

as L o ,  (6.19) 

(6.20) 

This tells us that Q s ( x )  tends to 1 a t  infinity, which implies that far-off shocks 
are scattered independent of each other at  the rate of one shock per mean distance Z(t). 

The sum of (5.15) and (6.18) gives the probability for existence of any two shocks 
separated by l ( t )  x: 

B(X) = &(X) +&(X). (6.21) 

The functions (6.18) and (6.21) are depicted together with their asymptotic forms in 
figure 8. It may be observed that g(x) for small x are smaller than that for large x. This 
reflects the fact that a pair of shocks which are close together are more likely to be 
destroyed by collision than that of widely separated shocks. 
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7. Velocity correlation and energy spectrum 
Now that the joint probability distribution function g(r;,u, ,uf ; t) for the strength of 

any two shocks separated by the distance r is known, we can calculate the velocity 
correlation function B(r, t )  defined by (3.1). As shown in $ 2, the velocity field for 
R S t 1 is composed of a series of vertical lines (shocks) spaced alternately with 
oblique lines of slope l/t. The apace derivative of velocity ~'(2, t )  is given by 

- @/t) - E )  
at a shock, where 5 and ,u/t are the position and the strength of the shock, and by 1 /t in 
the region of oblique lines. Therefore we have 

Since (~'(2, t ) )  = 0, the left-hand side is rewritten as 

2 

where m) = (&) B(r,t) .t  

The right-hand side, on the other hand, is replaced by 

&) JO" apj*- apfpp'g(P;p,pf). 
Therefore (7.1) leads to 

Integrating (7.5) twice with respect to P under the conditions 

d 
dP 

B( i )  = -B(P) = 0 at P + o o ,  

we obtain 

Another equivalent expression of B(P) has been derived by Burgers (1950) : 

(7.8) 

The expression (7.7) is convenient for investigating the behaviour of B(P) for large P ,  
while (7.8) is useful for small P. It follows from (7.8) that 

This reflects the discontinuous structure of the velocity field under the condition 

t In $8.2 the velocity correlation function will be normalized with reference to J and t in 

R s t B i .  

order to compare with results due to Burgers (1974) [(see 8.13)j. 
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Let us define the turbulent energy per unit length by 

&(t) = #(u(z, V )  = p ( 0 ,  t ) ,  (7.10) 

where the fluid is assumed to have unit density. By making use of (7 .3) ,  (7 .8)  and (4.40),  
we can rewrite (7.10) as 

2n (1'"')8* t &(t) = - ( ) -(@p)+&(p") = - - 1 l ( t )  1 
2 t @) 

(7.11) 

Since l ( t )  for large t is expressed by (4.36),  we find that 

& ( t ) a  l / t .  (7.12) 

This is the energy decay law in the case J = 0. 
In  order to work out the form of B(1) explicitly, we must calculate the integral 

The first term on the right-hand side is converted, using (5.11) and (5.14),  into 

and the second, using (6.13) and (6.16), into 

(7.15) 
Then B(B) is obtained by putting (7.13)-(7.15) into (7 .7)  or (7 .8)  as follows: 

(7.16) 

which has the following asymptotic forms: 

as P+-0, (7.17) 1 2 ?  B(B) NN ;-; 

(7.18) 

The velocity correlation function (7.16) is depicted together with its asymptotic forms 
in figure 10. It starts with a positive value at P = 0, decreases linearly with B at first, 
becomes negative, takes a, minimum value and finally approaches zero exponen- 
tially. 

The energy spectrum function is defined by Fourier transformation of the velocity 
correlation function: 

E(k,  t )  = jom B(r, t )  cos kr dr .  (7.19) 

Integration of E(k,  t )  with respect to k from 0 to 00 gives the turbulent energy per unit 
length 

(7.20) 
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FIQURE 10. The velocity correlation function for case I. 

which has already been calculated above [see (7.10)-(7.12)]. In  terms of the normalized 

& = Z(t) k,  (7.21) wavenumber 

and the normalized energy spectrum 

(7.22) 
ta  I?(&) = -E(k ,  t ) ,  

the energy spectrum function (7.19) is expressed as 

ws 

I?(&) = - B(P) cos&PdP. (7.23) 
7 1 0  l Srn 

Substituting (7.16) into (7.23), we get 

(7.24) 

which has the following asymptotic forms: 

w 0.062L2 for small &, (7.25) I?(&) x I 2  Ja drr2Jom ~( 
ds 

&w 0 r + 9) + $(r  - 8) 

(7.26) 

The energy spectrum function (7.24) and its asymptotic forms (7.25) and (7.26) are 
shown graphically in figure 1 1 .  Kolmogorov’s k-4 energy spectrum is not observed here. 

The behaviour of I?(&) for small k is examined by expanding cos&P in (7.23) in 

2 *  
712 

8(&) w - k-2 for large &. 

(7.27) 



10-1 

Asymptotic properties of Burgers turbulence 361 

1 
5 

k 

10 20 

FIGURE 1 1 .  The energy spectrum function for case I. 

Comparing it with (7.25), we find 

(7.28) 

This result confirms that the initial distribution (4.15) actually produces a velocity 
field which satisfies the condition J = 0. 

The asymptotic behaviour of E(&) for large values of &, on the other hand, is exam 
ined by integrating (7.23) by part: 

(7.29) 

where (7.9) has been used. Since B’(O+) = -2/n from (7.17), the asymptotic form 
(7.29) coincides with (7.26). The &-2 dependence of the energy spectrum functionin the 
region of large values of wavenumber results from the discontinuous structure of the 
velocity field, in which 8’(0 + ) += 0. If the velocity field were continuous, then we might 
have B’(0) = 0 and P(&) w O(k4) for large values of &. It should be noted that when the 
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velocity field u(x ,  t )  is infinitely differentiable with respect to x ,  then the energy spec- 
trum falls to zero faster than any negative power of the wavenumber as it goes to 
infinity. 

8. Numerical experiments 
Now we shall investigate numerically how the velocity field develops after it starts 

with a random initial condition. Since we are interested in the situation R 9 t a 1, the 
velocity field is expressed as a system of shocks and oblique lines. Instead of integrating 
the Burgers equation of motion directly we construct the solutions with the aid of a 
procedure using the parabolas and the s curves. For carrying out numerical experi- 
ments it seems more convenient to use the description of the system due to Tatsumi & 
Kida (1972)  than that due to Burgers (1974) which has been used in the preceding 
sections. Although the parabolas and the s curves are employed in different ways, 
these two are equivalent. 

Denote the tops of the s curve by (x i ,  y l ) ,  where i are integers and xi < xi, for i < i‘. 
To each top (xi, yi) we attach a parabola which opens downwardt and the vertex of 
which is on it: 

We take the highest parabolic arc at  each point of x. The set of these arcs represents the 
velocity field completely. It can be easily shown that the vertices of parabolic arcs 
and the intersections of adjacent arcs give the intersections of oblique lines with the x 
axis and the positions of shocks respectively. Note that the above relation between 
parabolas and shocks is the reverse of that in Burgers’ procedure. Statistics of the 
highest parabolic arcs determines all statistical quantities for shocks such as the 
probability distributions for p, 6 and A, the velocity correlation function and the 
energy spectrum function. 

The set of highest parabolic arcs at  any instant is determined successively by that 
a t  a previous instant. Let {x i }  and {xi} be the sets of the x co-ordinates of the vertices 
of the highest parabolic arcs at  t and t’ ( t  < t ’ )  respectively and let Ei be the x co-ordinate 
of the intersection of two adjacent parabolas attached to xi and xi+l a t  t ’ .  Then the 
set {ti} represents the positions of shocks at  t ’ .  Select from {ti} the elements which 
satisfy the condition Ei < Ei. for i < i’ and denote them by {E}.  Then the set {x i }  
is composed of the elements in {xi} which contribute to yield { E l } .  Since {xi}  is a 
subset of {xi}, the number of the elements in the former is fewer than that in the latter. 
This implies a decrease in number of shocks, which arises from coalescence of shocks by 
collision. In  this way the set of highest parabolic arcs a t  t‘ is determined by that a t  a 
previous instant t .  This process is repeated at  every time step in numerical experiments. 

The above argument makes it possible to give the set of highest parabolic arcs at  any 
time, say t l ,  when shocks and oblique lines are already formed instead of at  the initial 
instant. We can choose as this time the one at  which the typical length is much longer 
than that a t  the initial instant but much shorter than that at  times which we are now 
considering. For simplicity of description we use the length- and time-scales referred 
to a state at  a time under consideration, not to the initial state. In  practice, in case I we 

t We reverso the y-axis in the original paper in order to get the identical configuration of 

y = - (x - Xi)2/2t + y5. (8 .1 )  

shocks aa in the present paper. 
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Experiment P(Y) AxA B 

5.72588 
n 

(i) Ax.4 exp c -Blvl'l *B' 
(ii) A d  exp r - BlYl l  tn 
(iii) AxA e ~ p  [-By*] ( B l 4  + 0.975887 

TABLE I. The probability for the y co-ordinates of vertices of the highest 
parabolio arcs given at h. 

put the mean distance between two adjacent shocks Z(t) at unit at t = 1, while in case 
I1 we put the integral scale of the velocity correlation function J at unit in order to get 
the same length-scale of the velocity field as that used by Burgers (1974). 

The numerical experiments are made in a finite domain 9. The x axis is divided by 
the discrete points specified by (4.1), where Ax < 1. The vertices of the highest para- 
bolic arcs a t  6 are assigned on these points. This restriction is permissible so long as we 
deal with the situation at t > tI, in which the typical length is much longer than Ax, 
i.e. Z(t) 9 Ax. 

Two cases J = 0 and J + 0 will be studied in $0 8.1 and 8.2, respectively. The former 
has the intention of comparing with the results obtained analytically in the present 
paper and the latter with the predictions by Burgers (1974). 

8.1. Case I: J = 0 
The y co-ordinates of vertices of the highest parabolic arcs a t  tI are given on the points 
(4.1) independently of each other by random numbers produced by a computer with a 
prescribed probability P ( y ) .  They are given in a sufficiently large domain over 9 so 
as to make the velocity field i n 9  homogeneous. We make three experiments with 
the probabilities (i) P ( y )  = AxA exp [ -BJyJ*], (ii) P ( y )  = AxA exp [ -Blyl] and 
(iii) P ( y )  = AxA exp [ - By2], which have the asymptotes of the type (4.15) with a = 0 
and /3 = S, 1, 2, respectively. The step Ax is always set at 0.01. The constants A and B 
are so chosen that the condition (4.2) holds and that Z(t) calculated from (4.24) and 
(4.28) satisfies the condition Z(1) = 1. Their values are listed in table 1. The length of 
the domain 9 is determined in order that it contains ten thousand of shocks at t = 1. 
The highest parabolic arcs are determined successively at t = 2", n = 0, 1,2, .. ., 10. 

Total number of shocks containedin9, which is equal to that of the highest parabolic 
arcs, is counted at every time. Dividing it by the length of 9, we obtain N(t) and its 
reciprocal Z(t). They are plotted in figure 12 together with the adalytical curves derived 
from (4.24) and (4.28). It is seen that the analytical and experimental results for 
experiment (ii) are in perfect agreement. For (i) or (iii), however, they diverge by 
about 20 or 10 yo respectively, while their time-dependences are in good agreement. 
This disagreement may come from the errors included in the approximate estimations 
(e.g. (4.21)-(4.23)) made in $4. In  fact, ij(t) is 0.83-3.05 or 1-61-2.42 in (i) or (iii) res- 
pectively, which is not sufficiently small and gives rise to the above magnitudes of 
errors. Incidentally it should be noted that the curves for (i) and (iii) are not straight 
but bend in the direction of the line for (ii). This suggests that the typical length in the 
numerical experiments with Ax < 0.01 would become such as to satisfy (4.36). 

The distribution functions for the strength and the advance velocity of a single 
shock and for the distance between two shocks, the velocity correlation function and 
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FIGURE 12. The time-dependences of the characteristic length and the number density of shocks. 
The CUIV~S - - -, -, - * - * -  indicate respectively those for experiments (i) ,  (ii) and (iii) in case I 
The line - and the mark indicate the analytical and experimental results in case 11. 

the energy spectrum function are calculated from the positions of vertides of the highest 
parabolic arcs a t  every time step. It is found that all the above functions have self- 
preserving forms with respect to time, which has already been predicted analytically. 
That is, when the length-scale is normalized with reference to Z(t), the values of the 
functions obtained numerically coincide with each other at different times. Therefore 
we shall show below only the data a t  t = 1 as the representative ones. 

The distributions for the strength and the advance velocity of a single shock are 
obtained as follows. The j, 6 plane is divided into square meshes of sides of 0.2. The 
number of shocks whose strength and advance velocity are included in each mesh is 
counted. Dividing them by the total number of shocks we obtain the joint probability 
distribution for the strength and the advance velocity of a single shock. It turns out 
that the relation (4.37) holds perfectly in experiment (ii) and approximately in (i) 
and (iii), that is, the distributions forp and c are independent of each other. The dis- 
tribution for a single variable j or c is obtained from the partial sums of the joint 
probability distribution. Those at t = 1 are plotted in figures 5 and 6, respectively. 
They are again in good agreement with the analytical curves in experiment (ii), but 
a slight discrepancy is observed in (i) and (iii). 

The distributions for the distance x between two shocks are obtained by counting 
the number of pairs of such shocks that 0-2(n-  1) < x < 0.2n, n = 1, 2, .... Those of 
adjacent shocks and separated shocks, and their sum at t = 1 for experiment (ii) 
are plotted in figure 8. The agreement with the analytical curves is quite satisfactory 
though there are some fluctuations in the data. For experiments (i) and (iii), the 
data of which are omitted here, it  is observed that those a t  small x( 5 1 )  are higher 
and lower by several per cent than the analytical curves respectively, but both of them 
a t  large x( 2 1) agree well with the analytical curves. 

The turbulent energy per unit length &(t) is calculated from (7.1 l),  where Z(t) ( = @)), 
(,it2) and U3) are determined numerically. The results are plotted in figure 13 
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FIGURE 13. The time-dependence of the turbulent energy per unit length. 
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together with the analytical energy decay curves derived from (4.24), (4.28) and 
(7.11). The agreement of the numerical and analytical results is again good in 
experiment (ii). But just as for the characteristic length Z(t) it is seen that the energy 
decay curves for experiments (i) and (iii) are slightly diverse from the corresponding 
analytical ones though they have the same time-dependence. 

The velocity correlation function is calculated through (7.8). The integration with 
respect to P' is carried out by making use of the trapezoidal rule with the step 0.05. The 
Fourier transformation (7.19) of the velocity correlation function yields the energy 
spectrum function. These functions at t = 1 are plotted in figures 10 and 11, res- 
pectively. Here again we observe the good agreement for experiment (ii) and slight 
disagreement for (i) and (iii). This disagreement may be attributed to the fact that 
Ax = 0.01 for (i) and (iii) is not sufficiently small to realize the asymptotic states. The 
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above results show that the approach to the asymptotic states is very slow except for 
experiment (ii). 

82. Case 11: J += 0 

Next we shall consider the case J + 0 which was investigated analytically by Burgers 
(1974). Except for the fact that the series of contact points is expressed as a Wiener- 
process along the x axis, the analysis is just the same as the present one for the case 
J = 0. Thus we shall recapitulate only his results which are related to  the present work. 

Let P(x', yf [x, y) be the transition probability of the Wiener-process from the point 
(x, y) to (x', 9'). Then taking account of (3.5), we have 

The absolute position of the series of contact points described by this process is 
indefinite. But it does not matter, for the velocity field is determined completely only 
by the form of the series. It should be noted that although the probability distribution 
of the series is inhomogeneous along the x axis, the velocity field derived from it is 
homogeneous. 

The characteristic length Z(t) and the turbulent energy per unit length &(t)  are 
immediately obtained by making use of the constancy of J and the dimensional reason- 
ing as follows: 

The highest parabolic arcs are determined in the same way as in 88.1. Statistics of 
them yields various probability distribution functions for shocks. Actually, Burgers 
expressed the joint probability distribution function for p and 5 of a single shock 
in an integral form, but the expression was too complicated to be drawn graphically. 
Therefore only a few lower-order moments (,umcn) were calculated as listed in table 
2.7- The constants m,, m3 and m5 were expressed by complicated series. The first two 
of them were estimated approximately as follows, but m5 has not yet been worked out: 

Z(t) cc t+, &( t )  cc t-+. 03-31 

m, z 1-053, m3 % 1.8. (8.4) 

+"[n) = 0 when n is odd. (8 .5 )  

It follows from homogeneity and isotropy of the velocity field that 

The characteristic length Eft) and the turbulent energy per unit length &(t)  are 
obtained by making use of the values of @), ( j i 3 )  and ( j i [z )  and their time-dependences 
(8.3) as follows : 

(8.6) 
1 

m1 
Z(t) = - t f ,  

8(t) = +ml J#t-Q. (8.7) 

The numerical experiments are made for the purpose of confirming the above pre- 
dictions and determining numerical values of various statistical quantities whose 
explicit forms are not yet obtained analytically, such as the distribution functions for 

In this subsection the variables p, t, x, T" stand for the corresponding ones measured by 
Jhf and 1, Oa, &, S, % the functions of these variables. 
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n 
7- 3 

rn 0 2 4 

0 1 
126 . llrn. -+- 

42m, a 4 h ,  

1 -( .i. 0.950) # (+ 0.667) - 1 

% 

2 ma -(+ 1.7) 
*I 

34 rn6  

21m1 h, 
+- - 

- 3 4 

4 - 296 m5 +- 
21m, m, 
- 

5 

TABLE 2. Several lower-order moments (,P@) = (p"p)/(J*tg)"+" obtained by Burgers (1974) 
where ml e 1.053 and ms % 1.8 but ms is not yet known. 

shocks, the velocity correlation function and the energy spectrum function. The pro- 
cedure of the experiments is the same as that in $8.1 except that the probability 
distribution function (8.2) is adopted here for setting up the series of contact points. 

Just  like in $ 8.1 i t  turns out that all the statistical quantities are self-preserving 
with respect to time. But a weak dependence of the characteristic length on the step 
width Ax is observed. It is obvious from the way how the s curve is set up that the 
shocks whose strengths are less than Ax/t are disregarded in the velocity field. The 
fraction of such shocks is equal to that of the Wiener-process which oozes through the 
space of the discrete points (4.1). By taking account of spreading of the Wiener-process, 
we can expect that the fraction is proportional to the square root of Ax. Therefore the 
number density of shocks may be expressed as a linear function of (Ax)* when Ax Q I. 
In  order to examine the dependence of the number density on Ax and extrapolate the 
characteristic length at the limit Ax = 0 we make eleven experiments with different 
Ax. Actually (Ax)* = 0.1 + 0-02n, n = 0,1 ,2 ,  . .., 10 are chosen. For each fixed Ax ten 
independent experiments are made and the numerical values of all the statistical 
quantities are obtained by taking an ensemble average over them. 

The number density of shocks a t  t = 1 is plotted against the square root of Ax in 
figure 14. It is seen that they lie on a common straight line though there exist some 
statistical fluctuations. The full line is the one which is determined by the method of 
least squares: 

(8.8) 

Thus, at the limit Ax = 0 we have 

N&( 1 )  = 1.058 - 0*425(A~)*. 

N(1) = m, w 1.058. (8.9) 

The characteristic length at t = 1 is given by the reciprocal of (8.9): 

Z(1) w 0.945. (8.10) 

The agreement with (8.4) and (8.6) is quite satisfactory. 
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3 

FIGURE 14. The dependence of the number density on the step Ax. The dots and the vertical 
lines indicate the mean value and the standard deviation. The full line is determined by means 
of the method of least squares. 

In  the following we shall show the modified data in the experiment with Ax = 0.01, 
in which the number density at t = 1 happened to be 1.01 9. All the statistical quantities 
are modified by multiplying the factor 1.019/1.053 x 0.968 in order to obtain the 
limiting values at Ax = 0. 

The characteristic length Z(t) and the turbulent energy per unit length &(t )  are 
plotted together with the analytical results (8.6) and (8.7) in figures 12 and 13, res- 
pectively. It is seen that the experimental and analytical results are in good agree- 
ment. 

Several lower-order moments (,Gmcn) for even n at t = 1 are listed in table 3. It is 
seen that in this case the distributions for 9 and g are not independent of each other, 
i.e. (,Zmcn) + (,Gm)(@). They are in good agreement with those in table 2 within 
the statistical fluctuations. By making comparison between these two tables we find 

m3 = 1.79 -+ 0.02 and m5 = - 2-6 0.1, (8.11) 

where m3 agrees with the analytical value (8.4). Incidentally it is observed that the 
moments for odd n fluctuate about zero. 

The statistical functions are determined numerically by taking an ensemble average 
over ten experiments. The standard deviations are on the whole within a few per cent 
of the mean values. Since all the functions are self-preserving with respect to time, we 
shall show the data at t = 1. 
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n 
I > 

m 0 2 4 

0 1 0.828 f 0.007 2-12 * 0.05 
1 0.950 0.666 j: 0.005 1-44 f 0.03 
2 1.70 f 0.02 1-06 f 0.02 2.04 f 0.05 
3 3.98 0.08 2-20 f 0.05 4.0 f 0.2 
4 10.9 * 0-3 6.8 f 0.2 9.6 f 0.5 
5 34* 1 17.3 * 0.6 20*2 

TABLE 3. Several lowerkorder moments (pm@) determined by tctking an ensemble average over 
ten numerioal experiments, where f stands for the standard deviation. 

0 I 2 3 

P 

FIGURE 15. The probability distribution for the strength of shocks for cam 11. 

The distribution function for the strength of shocksf(,&) is depicted in figure 15. It 
diverges to infinity at ,iZ = 0. A closer inspection reveals that 

&) w 0-37,Ea a0 ,iZ-+O, (8.12) 

which is compatible with (8.8) since, when a function which behaves like ,iZ-4 is approxi- 
mated by a step function of width Ax, an error proportional to   AX)^ may occur. 

The distribution function for the advance velocity of shocks &(g) is plotted in figure 
16. A Gaussian distribution with the same variance is drawn by a full line for com- 
parison. The good agreement suggests that &(c) can be approximated by a Gaussian 
distribution, but this is not yet proved analytically. 

The distributions for the distance between two adjacent and separated shocks and 
their sum, ga(x), g8(x) and g(x) respectively, are depicted in figure 17. They are some- 
what similar to those for the case J = 0. It is observed that @JO) coincides with the 

13 FLY 93 
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u 

5 
FIGURE 16. The probability distribution for the advance velocity of shocks for case 11. The full 

line denotes a Gaussian distribution with the 8 m e  variance. 

FIQURE 17. The probability distributions for the distance between 
two shocks for case II. 

value rn3/2m, x 0.85 which was obtained by Burgers, gs(x) increases in proportion to 
x near the origin and Q(x) approaches N (  1) = 1.053 as x + a. 

The velocity correlation function B(r, t )  is shown in figure 18, where 

B(P) = (t/J)QB(r, t ) .  (8.13) 

This function is positive definite for all i and coincides near P = 0 with the line 

B(P) = 1.053-0-9r", (8.14) 

which is derived analytically from (7.8) and table 2. 
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FIGURE 18. The velocity correlation function for case 11. 

37 1 

Figure 19 shows the energy spectrum function E(k , t )  obtained by the Fourier 
transformation (7.19) of B(r, t ) .  The normalized wavenumber k and the normalized 
energy spectrum E(&) are defined by 

1 
Z(L) = -;E(k,t) .  E = J W k ,  

J 

At large wavenumbers the energy spectrum function has the asymptote 

(8.15), (8.16) 

(8.17) 

which is derived analytically from (7.29) and table 2. Here again Kolmogorov’s k-g 
energy spectrum is not observed. At small wavenumbers it approaches the constant 
value 1/r z 0.318 which follows from (7.27) and the definition of J .  Our energy spec- 
trum function bears a close resemblance to those obtained by Jeng et al. (1966) and 
Hosokawa & Yamamoto (1970). Since, however, the time-dependence of the length- 
scales in these earlier works is unknown, quantitative comparison with them is not 
possible. 

9. Discussion 
The asymptotic properties of Burgers turbulence at extremely large Reynolds 

numbers and times have been investigated by dealing with an ensemble of solutions of 
the Burgers equation as the initial value problem. It is found that some of them depend 
crucially upon the statistical properties of the initial velocity field. For example, the 
characteristic length and the turbulent energy per unit length change in time in differ- 
ent manners in cases I and I1 (see table 4). In  this section we shall give another inter- 
pretation to their time-dependences by making use of the geometrical procedure of 
constructing solutions in terms of the s curve and the parabolic arcs. 

13-a 
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FIUURE 19. The energy spectrum function for caae 11. 

E(k, t )  for 
Case J Q w 4 t )  small k 
I 0 0 t€ 1-1 k2 

I11 Infinite 1 
t-6 Constant 

k-2 
t5 
t Divergent 

I1 Finite * 
TABLE 4. The characteristics of turbulence dependent upon J. 

An s curve which starts from the origin fluctuates at random about the x axis and 
its mean extent, which is measured by the root mean square distance from the x axis, 
increases with x. Let us suppose the mean extent of the s curve changes with x as 

YKX", (9.1) 
where cr 2 0 (figure 20). Here we confine ourselves to the case in which the probability 
of finding the s curve a t  (2, y)  decreases rapidly, e.g. exponentially as y goes to infinity. 
For, when it decreases slowly, e.g. algebraically, the 8 curve spreads out gently and its 
extent is not definite. 
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FIGURE 20. The geometrical interpretation of the time-dependence of the characteristic length. 

Remember that the characteristic length is given by the mean distance between two 
adjacent contact points of the s curve on the parabolic arcs. Since the contact points 
come close to the tops of the parabolic arcs at large times, the order of the character- 
istic length may be measured by the z co-ordinate of the intersection of the parabola 

y = x2/2t (9.2) 

Z(t) oc t1/(2-). (9.3) 

and the extent of the s curve (9.1), both of which pass through the srigin. Then we find 

Now let us consider the following three cases: (I) the probability distribution for 

s(z) = - u(z', 0)dz' JX 
is homogeneous, (11) u(x, 0) is homogeneous and (111) h ( x ,  O)/ax is homogeneous. The 
first two are equivalent to cases I and I1 in the previous sections respectively.' T b  
parameters u corresponding to the cases I, 11, I11 are 0,3, 1, respectively. The last two 
values of cr are derived by taking the law of large numbers into account. The time- 
dependences of Z(t) and &(t) for the respective cases are listed in table 4. It is seen that 
they coincide perfectly with the previous results in cases I and 11. Recently the numeri- 
cal experiments corresponding to case I11 were made by Tokunags (1979) and it was 
observed that Z(t)cc t .  Incidentally, in this case the turbulent energy per unit length 
diverges to infinity, and so does J .  

In  the present paper the velocity correlation function (u(x, t )  u(z + r ,  t ) )  has been 
calculated by making use of the joint probability distribution for two shocks. The 
two-point velocity correlation functions of arbitrary order (u(z, ~ ! ) ~ u ( z  + r ,  t)"), 
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rn, n = 1,2,3,  . . . , can be calculated in the same way. But in order to obtain three- or 
more-point velocity correlation functions it is necessary to know the joint probability 
distributions for the corresponding numbers of shocks. 

Lastly we should like to make a remark on the behaviour of the energy spectrum 
function E(k , t )  for small wavenumbers. It has a close relation to the asymptotic 
behaviour of the velocity correlation function B(r, t )  for large r .  

When B(r, t )  falls to zero faster than any negative power of r ,  any order of moments 
of B(r, t )  exists and therefore E(k,  t )  is infinitely differentiable with respect to k a t  
k = 0. Then E(k,  t )  can be expanded into a power series of k as follows: 

E(k,  t )  = E ,  + E,(t)  k2 + E4(t)  k4 + . . . . (9.4) 

The lack of odd-power terms is due to the fact that E(k,  t )  is an even function of k and 
infinitely differentiable with respect to k at k = 0. Although E ,  = J /m is a constant of 
motion, it is not known whether E,, (n + 0) are invariant in time or not. It is very 
probable that they may change in time except for the cases of some particular initial 
conditions. Therefore it may be assumed that E,, (n 9 0 )  take non-zero values even if 
they are put at zero a t  an initial instant. Consequently we have, in general, 

E(k,  t )  cc k2 or E(k,  t )  z constant ( $. 0) 

for small k according as E ,  = 0 or E ,  $: 0. These correspond to cases I and 11, 
respectively. In  passing, we may point out that E(k,  t )  cc k-, for small k in case 111. I n  
this case the spectrum function of au(x,t)/ax takes a finite value at  the zero wave- 
number. 

When B(r,  t )  w O(r-s) (s > 1)  for large values of r ,  on the other hand, the situation is 
quite different. If we denote the least integer not less than s by n, E(k,  t )  is (n - 2) times 
differentiable with respect to k a t  k = 0.  Then we have 

E ( k , t )  = E,+ E,(t)  kz+ ... + EN-,(t)  kN-'+ RM, (9.5) 

where N is the largest even number not larger than n and 

O(kn-l In k)  when s is an integer, 

otherwise. 
Res = (9.6) 

It is possible that in this case E(k ,  t )  begins with powers other than even numbers. In  
fact, when E ,  = 0, we have E(k,  t )  cc k8-l or E(k ,  t )  cc k2 for small k according as 

1 < $ < 3  or $ > 3 .  

In  order to investigate the dependence of the energy decay law on the large-scale 
motion of turbulence, i.e. the form of E(k , t )  for small k,  Yamamoto & Hosokawa 
(1976) made numerical experiments using the initial energy spectrum of the type 
kQexp ( -  kz), a = 0,  g, &,2,10,18. To our great regret, however, the results are not 
decisive. The states in which any power law holds were not attained in their experi- 
ments probably because Reynolds numbers and/or times were not sufficiently large. 
The numerical experiments with larger Reynolds numbers and times are eagerly 
waited for. It is very interesting to know what kind of difference would be realized 
according as B(r, t )  falls to zero faster than any negative power of r with increasing r or 
not. 
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Appendix 

due to U. Frisch (1978). 
We give here another derivation of the energy decay law in case I, which is chiefly 

Let us introduce a velocity potential a(x, t )  such that 

a 
ax 

u(x, t )  = - - a(x, t ) .  

Assume that initially 

(A 2) 
a 

u(x, 0 )  = -&a&), 

where ao(x) is a spatially stationary stochastic process. Then a(x, t )  obeys 

which is derived from (A I )  and the Burgers equation (2.1). Notice that uo(x) is 
equivalent to the s curve a(x). Since (A 3) is translation-invariant, a(x,t) will be a 
spatially stationary process for any t ( > 0) .  Averaging (A 3), we find that 

Therefore the energy decay law can be obtained from the time derivative of the mean 
potential. In  the limit R+m, the velocity potential has a simple representation 

(x - ,')a 
a(x, t )  = sup ( uo(x') - -?i-). 

d 

This follows from the same argument as that described below (2.2). 
In  order to calculate (a@, t ) )  ( = (a(0, t ) ) ) ,  we define the distribution function for a: 

&(a, t )  = R o b  (a(0, t )  < a) = Prob < a for all d). (A 6) 
Then we have 

where H(a)  is the Heaviside function, and &( - co, t )  = 0 and Q(co, t )  = 1 have been 
taken into account. The time derivative of (A 7) yields the turbulent energy 

It can be shown that, when t % 1, the function &(a, t )  only for very large a (say 
a (az)*) will be requisite. Then, in just the same way as in 8 4, we find 

Substitution of (A 9) into (A 8) leads to 
W 

[ (2: J a ~ ( x a  + a)  dx] 1 da. s(t) = -Ja (f F(x%+a)dxexp -- 1 

AX(2t)t -a -a 

(A 10) 



376 S .  Kida 

When P(y) is given by (4.15), we obtain 

which is the same as (7.12). For the algebraic decrease case 

on the other hand, we get 
P ( y ) a y - y  as y+m, 

&(t) cc t - -2(~--2)1(2~-3) .  

The power in (A 13) varies between - 6 and - 1, since y > Q is required to ensure the 
convergence of the integral in (A 10). 

The same energy decay law can be, of course, obtained by direct integration, not by 
the method of steepest descent, in the framework in the previous sections. Further- 
more, it  can be shown that in the case of (A 12) the velocity correlation function 
B(r, t )  vanishes algebraically like r5-z7 as r+m. This behaviour is quite different 
from that in the case of exponential decrease of P ( y ) .  The details in the case of (A 12) 
will be studied elsewhere. 

The author would like to express his cordial thanks to Prof. T. Tatsumi for his 
continual guidance and helpful advice and Prof. U. Frisch for his invaluable comments. 
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